Integrating Explanatory and Descriptive Learning in ILP

نویسندگان

  • Yannis Dimopoulos
  • Saso Dzeroski
  • Antonis C. Kakas
چکیده

A learning framework that combines the two frameworks of explanatory and descriptive In ­ ductive Logic Programming (ILP) is presented. The induced hypotheses in this framework are pairs of the form (T, IC) where T is a defi­ nite clausal theory and IC is a set of integrity constraints. The two components allow us to combine complementary information from the same data by applying both explanatory and descriptive learning methods. This non-tr ivial integration is achieved using a nonmonotonic entailment relation for the basic notion of cov­ erage in the combined language of rules and constraints where the constraints can restrict the conclusions derivable by the rules. We present a semantics for the new framework and then discuss different cases where combin­ ing information from explanatory and descrip­ tive ILP could be useful. We present some basic algorithmic frameworks for learning in the new framework, and report on some preliminary ex­ periments wi th encouraging results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning with Abduction

We investigate how abduction and induction can be integrated into a common learning framework through the notion of Abductive Concept Learning (ACL). ACL is an extension of Inductive Logic Programming (ILP) to the case in which both the background and the target theory are abductive logic programs and where an abductive notion of entailment is used as the coverage relation. In this framework, i...

متن کامل

Boosting Descriptive ILP for Predictive Learning in Bioinformatics

Boosting is an established propositional learning method to promote the predictive accuracy of weak learning algorithms, and has achieved much empirical success. However, there have been relatively few efforts to apply boosting to Inductive Logic Programming (ILP) approaches. We investigate the use of boosting descriptive ILP systems, by proposing a novel algorithm for generating classification...

متن کامل

The Construct of Interlanguage Pragmatic Learning Strategies: Investigating Preferences of High vs. Low Pragmatic Performers

Interlanguage pragmatics (ILP) has witnessed a growing body of research in the past two decades. One of the under-explored domains of L2 pragmatics is the role of learning strategies specifically tailored for the development of ILP knowledge. Therefore, this investigation aimed to determine the significant interlanguage pragmatic learning strategies (IPLS) used by high vs. low L2 pragmatic achi...

متن کامل

Boosting Descriptive ILP for Predictive Learning

Inductive Logic Programming has been very successful in application to multirelational predictive tasks. Sophisticated predictive ILP systems, such as Progol and foil, can achieve high predictive accuracy, while the learning results remain understandable. Although boosting [1] is an established method to promote predictive accuracy of weak algorithms, there have been relatively few efforts to a...

متن کامل

Integrating Abduction and Induction in the Learning from Interpretation Setting

In this paper we describe an approach for integrating abduction and induction in the ILP setting of learning from interpretations with the aim of solving the problem of incomplete information both in the background knowledge and in the interpretations. The approach is inspired by the techniques developed in the learning from entailment setting for performing induction from an incomplete backgro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997